M2-Condensed Matter and Nanophysics
Photon-Matter Interactions

Home work

We consider here a two-level atom interacting with a single mode of the elec-
tromagnetic field. When this mode is treated quantum mechanically, specific
features occur in the atomic dynamics, such as damping and revivals of the
Rabi oscillations.

1 Quantization of a Mode of the Electromagnetic Field

We recall that in classical mechanics, a harmonic oscillator of mass m and
frequency w/2w obeys the equations of motion da/dt = p/m and dp/dt =
—mw?z where z is the position and p the momentum of the oscillator. Defin-
ing the reduced variables X (t) = z(t) /mw/h and P(t) = p(t)/vhmw, the
equations of motion of the oscillator are
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and the total energy U(?) is given by
h
U(t) = - (X*(t) + P*(1)) - 2)

1.1. Consider a cavity for electromagnetic waves, of volume V. Throughout
this chapter, we consider a single mode of the electromagnetic field, of the
form

E(r,t) = u,e(t)sinkz B(r,t) = u, b(t) coskz ,

where @, #, and u, are an orthonormal basis. We recall Maxwell’s equations
in vacuum: -
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and the total energy U(t) of the field in the cavity:
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(a) Express de/di and db/dt in terms of k, ¢, e(t), b(t).

(b) Express U(t) in terms of V, e(t), b(t), €, pro. One can take
. ; V

f sin® kzd®r = / cos® kzd%r = 5
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(c) Setting w = ck and introducing the reduced variables
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show that the equations for dy/dt, dIl/dt and U(t) in terms of x,II and
w are formally identical to equations 1) and  2). '

1.2. The quantization of the mode of the electromagnetic field under con-
sideration is performed in the same way as that of an ordinary harmonic
oscillator. One associates to the physical quantities x and II, Hermitian op-
erators ¥ and IT which satisfy the commutation relation

(%, 0] =1i.

The Hamiltonian of the field in the cavity is
- ﬁ‘w -
o= (¥ +17%) .

The energy of the field is quantized: E, = (n + 1/2) hw (n is a non-negative
integer); one denotes by |n) the eigenstate of Hc with eigenvalue E,.

The quantum states of the field in the cavity are linear combinations of the
set {|n)}. The state |0), of energy Ey = hw/2, is called the “vacuum”, and
the state |n) of energy E, = Fy + nhw is called the “n photon state”. A
“photon” corresponds to an elementary excitation of the field, of energy hw.

One introduces the “creation” and “annihilation” operators of a photon as
al = (x —ill)/v2 and @ = (x +il1)/v/2 respectively. These operators satisfy
the usual relations:

a'ln) = vn+1n+1)
an) =vnln—1) if n#0 and @l0) =0.

(a) Express H in terms of &' and @. The observable N = @'é is called the
“number of photons”.
The observables corresponding to the electric and magnetic fields at a
point r are defined as:

- Fiw
= w 1 b N
E(r) = u; ”_fn (64 a') sin k2

B(T‘) = iuy ji-[;}ﬁiu

The interpretation of the theory in terms of states and observables is the
same as in ordinary quantum mechanics.

(a7 — &) coskz .



(b) Calculate the expectation values (E(r)) , (B(r)) , and (n|Hc|n) in an
n-photon state.

1.3. The following superposition:

ja) = eIz 3 i, "

ri=(}

where @ is any complex number, is called a “quasi-classical” state of the field.

(a) Show that |a) is a normalized eigenvector of the annihilation operator a
and give the corresponding eigenvalue. Calculate the expectation value
(n) of the number of photons in that state.

(b) Show that if, at time ¢ = 0, the state of the field is |4(0)) = |a), then,
at time t, |¢(¢)) = e Wt/ 2|(qe—wt)).

(c) Calculate the expectation values (E(r)); and (B(r)); at time ¢ in a
quasi-classical state for which « is real.

(d) Check that (E(r)); and (B(r)), satisfy Maxwell’s equations.

(e) Caleulate the energy of a classical field such that Ey(r,t) = (E(r))
and B (r,t) = (B(r));. Compare the result with the expectation value
of He in the same quasi-classical state.

(f) Why do these results justify the name “quasi-classical” state for la) if
ler| > 17

2 The Coupling of the Field with an Atom

Consider an atom at point 7 in the cavity. The motion of the center of mass of
the atom in space is treated classically. Hereafter we restrict ourselves to the
two-dimensional subspace of internal atomic states generated by the ground
state |f) and an excited state |e). The origin of atomic energies is chosen
in such a way that the energies of | f) and |e) are respectively —hwa /2 and
+hiwa /2 (wa > 0). In the basis {|f),|e)} , one can introduce the operators:
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that is to say 6, |f) = |e) and 6_|e) = |f), and the atomic Hamiltonian can
be written as: Hy = F‘—*;ﬁ&z :

The set of orthonormal states {|f,n),le,n),n > 0} where |f,n) =
|f) @ |n) and |e,n) = |e) ® |n) forms a basis of the Hilbert space of the

{atom+photons} states.

2.1. Check that it is an eigenbasis of Hy = Ha + He, and give the corre-
sponding eigenvalues.
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2.2. In the remaining parts of the problem we assume that the frequency
of the cavity ig exactly tuned to the Bohr frequency of the atom, i.e. w = wa.

Draw schematically the positions of the first 5 energy levels of Hy. Show that,
except for the ground state, the eigenstates of Hy are grouped in degenerate
pairs.

2.3. The Hamiltonian of the electric dipole coupling between the atom and
the field can be written as:

W =nq(a64 +a'e_) ,

where v = —dy/hw/egV sin kzp, and where the electric dipole moment d is
determined experimentally.

(a) Write the action of W on the states |f,n) and |e,n).
(b) To which physical processes do @64 and a'é_ correspond?

2.4. Determine the eigenstates of H = Hy + W and the corresponding
energies. Show that the problem reduces to the diagonalization of a set of
2 x 2 matrices. One hereafter sets:

1

i _—
I¢n) = 75
Ez”:q:-d“%siukzg anﬂu\f"ﬂ"f“]—-

0

2

(1f,n+ 1) & e, n))

The energies corresponding to the eigenstates |¢) are denoted B

3 Interaction of the Atom and an “Empty” Cavity

In the following, one assumes that the atom crosses the cavity along a line
where sinkzg = 1.

An atom in the excited state |e) is sent into the cavity prepared in the
vacuum state |0). At time ¢ = 0 , when the atom enters the cavity, the state
of the system is |e,n = 0).

3.1. What is the state of the system at a later time 7

3.2. What is the probability Pr(T') of finding the atom in the state f at
time 7" when the atom leaves the cavity? Show that Py(T) is a periodic
function of T' (T is varied by changing the velocity of the atom).

3.3. The experiment has been performed on rubidium atoms for a couple
of states (f,e) such that d = 1.1x1072® C.m and w/27 = 5.0 x 10’ Hz. The
volume of the cavity is 1.87 x 1075 m® (we recall that ¢y = 1/(36710%) S.I.).
The curve Py(T), together with the real part of its Fourier transform

J(v) = fl:l' cos (2mvT) Pp(T)dT, are shown in Fig. 1. One observes a
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Fig. 1. (a) Probability P¢(T) of detecting the atom in the ground state after it
crosses a cavity containing zero photons; (b) Fourier transform of this probability,
as defined in the text.

damped oscillation, the damping being due to imperfections in the exper-
imental setup.

How do theory and experiment compare?

(We recall that the Fourier transform of a damped sinusoid in time exhibits a peak
at the frequency of this sinusoid, whose width is proportional to the inverse of the
characteristic damping time.)

4 Interaction of an Atom with a Quasi-Classical State

The atom, initially in the state |e), is now sent into a cavity where a quasi-
classical state |a) of the field has been prepared. At time ¢ = 0 the atom
enters the cavity and the state of the system is |e) ® |a).

4.1. Calculate the probability Py(T,n) of finding, at time T, the atom
in the state |f) and the field in the state |n + 1), for n > 0. What is the
probability of finding the atom in the state |f) and the field in the state |0)7?

4.2. Write the probability P;(T') of finding the atom in the state |f), inde-
pendently of the state of the field, as an infinite sum of oscillating functions.

4.3. On Fig. 2 are plotted an experimental measurement of P;(T") and
the real part of its Fourier transform J(v). The cavity used for this mea-
surement is the same as in Fig, 1, but the field has been prepared in a
quasi-classical state before the atom is sent in.

(a) Determine the three frequencies vy, 1, o which contribute most strongly
to Pr(T).

(b) Do the ratios vy /vy and v2 /vy have the expected values?

(c) From the values J(vy) and J(iq), determine an approximate value for

the mean number of photons |a|? in the cavity.
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Fig. 2. (a) Probability P;(T) of measuring the atom in the ground state af-
ter the atom has passed through a cavity containing a quasi-classical state of the
electromagnetic field; (b) Fourier transform of this probability.

5 Large Numbers of Photons: Damping and Revivals

Consider a quasi-classical state |a) of the field corresponding to a large mean
number of photons: |a|? ~ ng > 1, where ng is an integer. In this case, the
probability 7(n) of finding n photons can be cast, in good approximation, in
the form:

2n o w2

o —lai? | 1 (n— o)

m(n)=e ~ exp | ———
(m) n! V2T ng P 2 ng

This Gaussian limit of the Poisson distribution can be obtained by using the
Stirling formula n! ~ n™e ™y/2mn and expanding Inw(n) in the vicinity of
n.= Nnp.

5.1. Show that this probability takes significant values only if n i1s in a
neighborhood 6n of ng. Give the relative value dn/na.

5.2. For such a quasi-classical state, one tries to evaluate the probability
P¢(T) of detecting the atom in the state [ after its interaction with the field.
In order to do this,

e one linearizes the dependence of {2,, on n in the vicinity of ng:

n—n
Qo0 Dy + Do “

2/ng+1 "

e one replaces the discrete summation in P;(T) by an integral.

5)

(a) Show that, under these approximations, Py(T') is an oscillating function
of T for short times, but that this oscillation is damped away after a
characteristic time 7. Give the value of Tp.

We recall that

(= ]

1 o 2

/ e~ (2—%0)"/20° cos(az)dz = g & e 12 cos(auzg).
—oe TV2T

(b) Does this damping time depend on the mean value of the number of
photons ng?
(¢) Give a qualitative explanation for this damping,.



5.3. If one keeps the expression of Pp(T') as a discrete sum, an exact nu-
merical calculation shows that one expects a revival of the oscillations ol
P;(T) for certain times Tk large compared to Tp, as shown in Fig. 3
This phenomenon is called guantum revival and it is currently being studiec
experimentally.

Keeping the discrete sum but using the approximation (6.5), can you explair
the revival qualitatively? How does the time of the first revival depend or
?’Lﬂ?

4 Ps (1)

Qpt
0 50 100 150

Fig. 3. Exact theoretical calculation of Pg(T) for (n) =~ 25 photons.



